您好,欢迎访问广东省农业科学院 机构知识库!
筛选
科研产出
排序方式:

时间

  • 时间
  • 相关度
  • 被引量
资源类型: 中文期刊
收录级别:SCI(精确检索)
23条记录
基于点、面光谱技术的生鱼片品质检测

光谱学与光谱分析 2023 EI SCI 北大核心 CSCD

摘要:鱼生作是消费者钟爱的菜式之一,其品质主要受蛋白质、脂肪、含水率指标影响。传统品质检测操作繁琐、检测时间长、专业要求高,无法满足产业品质快速监管需求。因此,以草鱼生鱼片为研究对象,用点光谱(光纤光谱)、面光谱(高光谱成像)技术作为研究手段进行对比,探究一种快速、高效的生鱼片蛋白质、脂肪、含水率检测方法。研究发现:点光谱技术在鱼生鱼片品质无损检测上比面光谱技术更优,其光谱数据经卷积平滑法(SG)+标准正态变量变换(SNV)+竞争性自适应加权算法(CARS)+偏最小二乘(PLSR)建模后,蛋白质的指标训练集决定系数(R~2)为0.995 7,均方根误差(RMSE)为0.000 6,验证集决定系数(R~2)为0.941 9,均方根误差(RMSE)为0.002 4;脂肪指标训练集R~2为0.999 3, RMSE为0.000 6,验证集R~2为0.997 6, RMSE为0.001 7;含水率训练集R~2为0.999 2, RMSE为0.001 7,验证集R~2为0.094 1, RMSE为0.014 4,均可较准确地获取生鱼片蛋白质、脂肪含量,但对水分含量识别效果不佳,可能是鱼肉含水率差异非常小所致。

关键词: 草鱼 点光谱技术 光纤光谱 面光谱技术 高光谱成像

 全文链接 请求原文
水稻产量遥感监测机器学习算法对比

光谱学与光谱分析 2022 EI SCI 北大核心 CSCD

摘要:水稻是我国的主要粮食作物,利用高光谱遥感技术在水稻未成熟之前对水稻产量进行监测,一方面可以及时调整栽培管理方式,指导合理追肥,另一方面,可以准确掌握水稻的产量信息,帮助政府提前做出决策.以2019年—2020年广州市白云区钟落潭试验基地氮肥梯度实验为基础,分别获取水稻分化期和抽穗期冠层高光谱数据、作物群体长势参数(生物量、叶面积指数)及作物养分吸收量,利用贝叶斯岭回归(BRR)、支持向量回归(SVR)、偏最小二乘回归(PLSR)三种方法建立各生育期的产量监测模型并进行精度对比,确定水稻产量的最优估算时期和最佳估测模型.结果表明,三种方法中,BRR和SVR方法更适合产量监测,在不同时期及不同的参数组合下均有较好的表现(R2>0.82,NRMSE<8.22%);基于2019年与2020年数据,采用全波段光谱信息进行产量监测时,分化期最佳监测模型为BRR模型,R2为0.90,抽穗期最优监测模型为SVR模型,R2为0.87;采用全波段光谱协同作物群体长势参数进行产量监测时,两时期最佳监测模型均为BRR模型,R2分别达到0.90和0.92;相较于BRR模型和SVR模型,PLSR模型在不同时期和不同参数组合下,最高R2仅为0.75;基于2020年数据,以三种不同的参数组合作为输入时,两时期估算结果均为BRR模型最优,且分化期建模精度高于抽穗期(R2至少增加0.02,NRMSE至少降低0.61%);当输入参数组合为全波段光谱协同作物群体长势参数、作物养分吸收量时,BRR模型对产量的估算精度达到最高,R2为0.94.分析认为产量的最优监测时期是分化期,最优监测模型为BRR模型.研究结果可为水稻产量的早期遥感监测提供参考.

关键词: 高光谱遥感 水稻估产 贝叶斯岭回归 支持向量回归

 全文链接 请求原文
高分辨质谱在氯化石蜡分析方法中的应用

分析化学 2019 EI SCI 北大核心 CSCD

摘要:氯化石蜡(CPs)是一类新型持久性有机污染物,也是我国环境介质和生物体污染最严重的卤代有机污染物(OHPs)之一,近年来引起研究者高度关注。由于环境样品基质较为复杂,且其中CPs的含量水平相对较低,CPs需经提取与净化后才能进行仪器检测。CPs的同系物和异构体多达数千种,消除CPs单体以及其它OHPs的质量干扰是仪器检测CPs的关键。高分辨质谱(HRMS)具有相对较高的分辨率,能够解决这一关键问题。本文介绍了环境样品中CPs的提取与净化方法,主要从气相色谱-高分辨质谱(GC-HRMS)和液相色谱-高分辨质谱(LC-HRMS)两个方面阐述HRMS在CPs分析中应用的研究进展,总结了目前CPs分析方法中存在的问题,并对未来的发展趋势进行了展望。

关键词: 氯化石蜡 四极杆飞行时间高分辨质谱 轨道离子阱高分辨质谱 气相色谱 液相色谱 评述

 全文链接 请求原文
超高效液相色谱-串联质谱法测定荔枝花粉花蜜中吡唑醚菌酯及其代谢物

分析化学 2018 EI SCI 北大核心 CSCD

摘要:采用改进的Qu ECh ERS方法结合超高效液相色谱-串联质谱技术,建立了荔枝花粉和花蜜中吡唑醚菌酯及其主要代谢物BF 500-3的分析方法。样品经乙腈提取,分别由乙二胺-N-丙基硅烷(PSA)和十八烷基键合硅胶吸附剂(C_(18))净化、浓缩后进样分析,正离子扫描、多反应监测模式下,对基质匹配标准溶液定量分析,考察了前处理和质谱分析条件。结果表明,吡唑醚菌酯及其代谢物在1~100μg/L浓度内,基质匹配标准溶液线性关系良好,相关系数(R~2)为0.991~0.999。花粉和花蜜基质中的平均回收率为87.0%~97.8%,相对标准偏差(RSD)为1.3%~3.7%,检出限(LOD)为0.08~0.20μg/kg,定量限(LOQ)为0.20~0.50μg/kg。本方法简便、快速、灵敏度高,适于荔枝花粉和花蜜样品中吡唑醚菌酯及其代谢物的快速测定。

关键词: 超高效液相色谱-串联质谱 吡唑醚菌酯 代谢物 花粉 花蜜

 全文链接 请求原文
一个新颖南极微生物酯酶EST112-2的功能鉴定和在手性叔醇(S)-芳樟醇制备中的应用(英文)

有机化学 2018 SCI 北大核心 CSCD

摘要:手性叔醇是合成药物和一些香料产品的非常重要中间体.芳樟醇是叔醇的一种,不同构型的芳樟醇具有不同的香气.因此如何研发合适的制备方法以获得高光学纯度的芳樟醇等叔醇是急需解决的技术问题.生物酶催化合成符合绿色化学的理念,但是由于叔醇化学结构中的空间位阻影响,使用生物酶催化的拆分反应制备高光学纯度的叔醇比较困难.对来自南极微生物的一个新的酯酶EST112-2进行了功能鉴定,并将其作为合成手性芳樟醇的生物催化剂.EST112-2可以通过不对称水解乙酸芳樟酯获得(S)-芳樟醇.对反应的p H、温度、共溶剂、底物浓度、催化剂用量以及反应时间等参数进行优化,EST112-2制备的(S)-芳樟醇的光学纯度大于66%,得率超过72%.EST112-2制备的(S)-芳樟醇的光学纯度要远远高于以往报道.

关键词: 生物催化 南极微生物酯酶 动力学拆分 手性叔醇 (S)-芳樟醇

 全文链接 请求原文
一个新颖南极微生物酯酶EST112-2的功能鉴定和在手性叔醇(S)-芳樟醇制备中的应用(英文)

有机化学 2018 SCI 北大核心 CSCD

摘要:手性叔醇是合成药物和一些香料产品的非常重要中间体.芳樟醇是叔醇的一种,不同构型的芳樟醇具有不同的香气.因此如何研发合适的制备方法以获得高光学纯度的芳樟醇等叔醇是急需解决的技术问题.生物酶催化合成符合绿色化学的理念,但是由于叔醇化学结构中的空间位阻影响,使用生物酶催化的拆分反应制备高光学纯度的叔醇比较困难.对来自南极微生物的一个新的酯酶EST112-2进行了功能鉴定,并将其作为合成手性芳樟醇的生物催化剂.EST112-2可以通过不对称水解乙酸芳樟酯获得(S)-芳樟醇.对反应的p H、温度、共溶剂、底物浓度、催化剂用量以及反应时间等参数进行优化,EST112-2制备的(S)-芳樟醇的光学纯度大于66%,得率超过72%.EST112-2制备的(S)-芳樟醇的光学纯度要远远高于以往报道.

关键词: 生物催化 南极微生物酯酶 动力学拆分 手性叔醇 (S)-芳樟醇

 全文链接 请求原文
一个具有相反光学选择性的新颖海洋GDSL脂肪酶MT6用于(S)-1-苯基乙醇制备(英文)

催化学报 2016 SCI 北大核心 CSCD

摘要:1-苯乙醇是一种重要的手性药物中间体,并且(S)-1-苯乙醇和(R)-1-苯乙醇均具有应用价值.怎样获得光学醇的1-苯乙醇是药物合成中的重要问题.传统的化学合成手段不仅反应过程复杂,而且反应条件剧烈,对环境污染严重,因此生物催化方法越来越受到重视.脂肪酶和酯酶以其出色的立体选择性和温和的反应条件而被广泛用于手性药物的拆分制备.但是之前的一些研究发现脂肪酶和酯酶大都对(R)-1-苯乙醇及其衍生物有选择性,而我们发现并鉴定的脂肪酶MT6的立体选择性则与这些脂肪酶/酯酶完全相反,具体体现在以下两个方面:(1)MT6能够特异地催化(S)-1-苯乙醇和乙酸异丙烯酯的转酯反应,生成(R)-1-苯乙醇;(2)MT6能够选择性地水解(S)-乙酸苏合香酯,生成(S)-1-苯乙醇.可见,利用MT6催化的转酯反应和水解反应可以巧妙地进行(S)-1-苯乙醇和(R)-1-苯乙醇的制备.MT6来源于深海放线菌Marinactinospora thermotolerans SCSIO 00652,属于GDSL家族脂肪酶第II类群,这一类群的脂肪酶绝大多数来自微生物.有关GDSL家族脂肪酶在手性拆分中的应用研究非常少.我们之前报道了MT6的克隆、表达、纯化及转酯拆分反应,本文重点考察了MT6通过水解反应制备(S)-1-苯乙醇的条件,优化了酶促水解拆分反应温度、有机共溶剂、pH、离子强度、酶用量、底物浓度、反应时间以及底物侧链长度等参数.研究发现,在反应体系中加入一定量的有机共溶剂能够大大提高产物(S)-1-苯乙醇的光学纯度,其中添加二氯甲烷获得的结果最为理想,可以将产物光学纯度从43%提高到89%,E值从2.84提高至22.82.经过优化,最佳反应温度为40°C,共溶剂二氯甲烷浓度为5%(体积分数),反应缓冲液为0.1 mol/L Tris-HCl(p H=7.0),酶用量为150 mg/m L,底物为15 mmol/L乙酸苏合香酯,反应时间控制在12 h.在此条件下,制备的(S)-1-苯乙醇的光学纯度可达97%,转化率可达28.5%,E值为95.9.此外,还比较了侧链长度不同的1-苯基乙醇酯对水解反应的影响,结果表明1-苯基乙醇酯的侧链长度可极大影响光学选择性和产率.在反应条件相同时,MT6催化侧链长度为4个碳的丁酸-1-苯乙酯水解,生成(S)-1-苯乙醇的光学纯度仅为50%.利用Auto Dock软件进行分子对接,结果显示长侧链的1-苯基乙醇酯离活性中心His230的咪唑基较远,可能是导致酶立体选择性低的重要原因.值得注意的是,海洋微生物来源的GDSL脂肪酶MT6在水解反应和转酯反应中均表现出与一些已知脂肪酶/酯酶相反的立体选择性,因而具备进一步开发和应用价值.所制备的(S)-1-苯乙醇的光学纯度为97%,可以通过和转酯反应相结合的方式进一步提高产物的光学纯度和转化率.

关键词: GDSL脂肪酶 生物催化 动力学拆分 直接水解 (S)-1-苯基乙醇 相反的光学选择性

 全文链接 请求原文
四棱草中两个新的齐墩果烷型三萜

有机化学 2015 SCI 北大核心 CSCD

摘要:从中国特有四棱草属药用植物四棱草中分离得到两个新的齐墩果烷型三萜,命名为2β,3β,24-三羟基-13(18)-齐墩果烯(1)和3β-羟基-13(18)-烯-24-齐墩果酸(2),其结构通过HR-ESIMS,1D和2D NMR等光谱技术确定.

关键词: 四棱草属 四棱草 齐墩果烷型 三萜

 全文链接 请求原文
Vis-NIR光谱模式识别结合SG平滑用于转基因甘蔗育种筛查

光谱学与光谱分析 2014 EI SCI 北大核心 CSCD

摘要:以Savitzky-Golay(SG)平滑筛选,主成分分析(PCA)分别结合有监督的线性判别分析(LDA)、无监督的系统聚类分析(HCA),应用于转基因甘蔗育种筛查的可见-近红外(Vis-NIR)无损检测。提出兼顾随机性、稳定性的定标、预测、检验框架;取田间种植处于伸长期甘蔗叶样品456个,具有Bt基因和Bar基因的转基因样品(阳)306个,非转基因样品(阴)150个;随机选取156个为检验集(阴性50、阳性106),余下为建模集(阴性100、阳性200,共300),建模集再随机划分为定标集(阴性50、阳性100,共150)、预测集(阴性50、阳性100,共150)共50次;扩充SG平滑点数,同时删除绝对值偏小的高阶导数模式,共264个平滑模式用于模型筛选;采用前3个主成分两两组合,再根据模型效果选出最优主成分组合;基于所有定标、预测集划分和SG平滑模式,建立SG-PCA-LDA和SG-PCA-HCA模型,根据平均预测效果优选参数,使模型具有稳定性;最后用检验集进行模型检验。经SG平滑后,PCA-LDA和PCA-HCA的建模精度、稳定性均显著改善;最优SG-PCA-LDA模型阳性、阴性样品检验识别率分别达到94.3%和96.0%;最优SG-PCA-HCA模型阳性、阴性样品检验识别率分别达到92.5%和98.0%。结果表明:Vis-NIR光谱模式识别结合SG平滑可用于转基因甘蔗叶的准确识别,提供了一种简便的转基因甘蔗育种筛查方法。

关键词: 转基因甘蔗育种筛查 Vis-NIR光谱 SG平滑 PCA-LDA PCA-HCA

 全文链接 请求原文
植物水孔蛋白的亚细胞分布与生理功能研究浅析

生物化学与生物物理进展 2012 SCI 北大核心 CSCD

摘要:水孔蛋白(aquaporin,AQP)因具有水转运活性而得名,然而随着研究的深入,水孔蛋白转运活性的多样性与生理功能的多样性不断被报道.本文综合分析了植物水孔蛋白亚细胞定位与功能多样性的研究进展,重点综述了植物水孔蛋白广泛的亚细胞分布特点,以及亚细胞上的再分布现象与植物水孔蛋白生理功能多样性间的关系,并对植物水孔蛋白研究中存在的问题及研究方向进行了分析,认为水孔蛋白多样化的生理功能的作用机制需要结合其组织定位与亚细胞定位进行分析才能揭示.

关键词: 水孔蛋白 转运活性 功能多样性 亚细胞定位

 全文链接 请求原文

首页上一页123下一页尾页