您好,欢迎访问北京市农林科学院 机构知识库!

Genome-Wide Characterization of OFP Family Genes in Wheat (Triticum aestivum L.) Reveals That TaOPF29a-A Promotes Drought Tolerance

文献类型: 外文期刊

作者: Wang, Dezhou 1 ; Cao, Zhichen 1 ; Wang, Weiwei 1 ; Zhu, Wengen 1 ; Hao, Xiaocong 1 ; Fang, Zhaofeng 1 ; Liu, Shan 1 ; Wan 1 ;

作者机构: 1.Beijing Acad Agr & Forestry Sci, Beijing Engn & Tech Res Ctr Hybrid Wheat, Beijing 100097, Peoples R China

2.Yangtze Univ, Coll Agr, Jingzhou 434023, Peoples R China

期刊名称:BIOMED RESEARCH INTERNATIONAL ( 影响因子:3.411; 五年影响因子:3.62 )

ISSN: 2314-6133

年卷期: 2020 年 2020 卷

页码:

收录情况: SCI

摘要: OVATE family proteins (OFPs) are plant-specific transcription factors that play important roles in plant development. Although common wheat (Triticum aestivum L.) is a major staple food worldwide, OFPs have not been systematically analyzed in this important crop. Here, we performed a genome-wide survey of OFP genes in wheat and identified 100 genes belonging to 34 homoeologous groups. Arabidopsis thaliana, rice (Oryza sativa), and wheat OFP genes were divided into four subgroups based on their phylogenetic relationships. Structural analysis indicated that only four TaOFPs contain introns. We mapped the TaOFP genes onto the wheat chromosomes and determined that TaOFP17 was duplicated in this crop. A survey of cis-acting elements along the promoter regions of TaOFP genes suggested that subfunctionalization of homoeologous genes might have occurred during evolution. The TaOFPs were highly expressed in wheat, with tissue- or organ-specific expression patterns. In addition, these genes were induced by various hormone and stress treatments. For instance, TaOPF29a-A was highly expressed in roots in response to drought stress. Wheat plants overexpressing TaOPF29a-A had longer roots and higher dry weights than nontransgenic plants under drought conditions, suggesting that this gene improves drought tolerance. Our findings provide a starting point for further functional analysis of this important transcription factor family and highlight the potential of using TaOPF29a-A to genetically engineer drought-tolerant crops.

  • 相关文献
作者其他论文 更多>>